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ABSTRACT

Flow visualization produces data in the form of two-dimensional images. If the optical components
of a camera system are perfect, the transformation equations between the two-dimensional image and the
three-dimensional object space are linear and easy to solve. However, real camera lenses introduce
nonlinear distortions that affect the accuracy of transformation unless proper corrections are applied. An
iterative least-squares adjustment algorithm is developed to solve the nonlinear transformation equations
incorporated with distortion corrections. Experimental applications demonstrate that a relative precision on
the order of 40,000 is achievable without tedious laboratory calibrations of the camera.

1. INTRODUCTION

The photogrammetric technique was originally developed to determine topography using aerial
photography with ÒmetricÓ cameras. Due to the advent of CCD (Charge-Couple Device) digital cameras,
non-topographic applications of photogrammetry especially in the field of close-range photogrammetry
have become increasingly important.

A simple method for close-range photogrammetric data reduction with non-metric cameras was
developed by Abdel-Aziz and Karara.1 It establishes the Direct Linear Transformation (DLT) between the
coordinates of image points, measured with a comparator, and the corresponding object-space coordinates.
Since the DLT is a linear approach, it neglects nonlinear distortions introduced by real camera lenses.
Several methods exist for geometric calibration of cameras. The most accurate approach is to perform a
laboratory calibration as described by Snow et al.2 This is a time-consuming process and requires specially
fabricated test objects. A more convenient method is the in-situ calibration suggested by Bopp and
Krauss,3 in which the effects of distortion are determined together with other parameters of transformation
by solving a set of nonlinear equations. The drawback of the in-situ calibration is that the solution may fail
to converge to the best answer. A third possibility is a hybrid approach proposed by Cattafesta and
Moore,4 which applies the results of a less rigorous laboratory calibration to the in-situ calibration to
improve the likelihood of a good answer.

An algorithm using an iterative least-squares adjustment scheme has  been developed to solve the
nonlinear equations of the in-situ or hybrid calibration. This algorithm requires less CPU time to achieve
the same level of accuracy in solutions as compared to the Levenberg-Marquardt algorithm used by other
investigators.4 Practical tests of these algorithms are conducted with luminescent temperature-sensitive
paint (TSP) imaging on a three-dimensional swept-wing model tested in the Supersonic Low-Disturbance
Tunnel at NASA Langley.



2. MATHEMATICAL FORMULATION

In the absence of distortion, the Direct Linear Transformation (DLT)1 between a point ( , , )X Y Z  in
object space and its corresponding image space coordinates ( , )x y  can be expressed by the linear fractional
equations
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These equations are based on the collinearity condition that the object point, perspective center of the lens,
and ideal image point all lie on a straight line. Eqns. (1) can be solved directly for the 11 transformation
parameters   L L1 11L  if there are at least six registration marks in the image whose object-space coordinates
are known.

Optical distortion of imperfect
cameras will cause the image point to fall in
a slightly different location. Figure 1 shows
a schematic of the image geometry with
distortion. To reestablish collinearity,
correction terms Dx  and Dy  are added to
Eqns. (1):
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Figure 1. - Image geometry with distortion.
Considering lens distortions,5 there are three symmetric parameters ( , , )K K K1 2 3  for radial

distortion and two asymmetric parameters ( , )P P1 2  for decentering distortion. In addition, two more affinity
parameters ( , )A A1 2  to account for non-orthogonality and differential scaling of the sensor axes are very
applicable to CCD cameras. The cumulative influence of these distortions can be expressed as
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where ( , )¢ ¢x y  is the location of the distorted image point relative to the principal point ( , )x y0 0 :
¢ = -x x x0 and ¢ = -y y y0 (4)

and r  is the radial distance of the distorted image point from the principal point:

r x y2 2 2= ¢ + ¢ (5)

As shown in Figure 1, the optical axis of the lens is defined by the line perpendicular to the image plane
that passes through the perspective center ( , , )X Y Zc c c . The intersection point of the optical axis with the
image plane is called the principal point that is not necessarily located at the geometric center of the image,
although it is usually in this vicinity. The distance from the perspective center to the principal point is



defined as the principal distance c . Note that c  equals the focal length of a lens when the object is imaged
at infinity.

The transformation between image space and object space has 9 degrees of freedom. Three of these
( , , )x y c0 0  specify the interior orientation of the camera. The other six are associated with the exterior
orientation of the camera: ( , , )X Y Zc c c  related to 3 translations and ( , , )w f k related to 3 rotations with
respect to the object-space coordinate axes X , Y , and Z, respectively. Therefore, the 11 transformation
parameters   L L1 11L  have to fulfill the two constraints as noted by Bopp and Krauss6
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The interior-orientation parameters ( , , )x y c0 0  can be computed from the 11 transformation
parameters   L L1 11L  by the following equations4
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The exterior-orientation parameters ( , , )X Y Zc c c  and ( , , )w f k  can be obtained, if desired, using the
relations4
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An iterative least-squares adjustment scheme is developed to solve the 11 transformation
parameters   L L1 11L  and up to 7 correction parameters ( , , , , , , )K K K P P A A1 2 3 1 2 1 2 , plus the principal point
( , )x y0 0  that can be either solved as additional unknowns or computed from the 11 update transformation
parameters   L L1 11L  by Eqns. (7) after each iteration. The algorithm solves a set of nonlinear equations of
Eqns. (2), (6) and (7) in the rewritten forms as
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where the first pair of equations are applied to each registration mark that represents the horizontal and
vertical distance between the measured ( , )x y  and the computed ( , )x y  using the current guesses for the
DLT and correction parameters. This produces 2N equations for N registration marks. The remaining pairs
of equations are defined as the L-constraints for c1 and c2 , P-constraints for c3 and c4 , and C-constraints
for c5 and c6, because these equations represent the constraints to be satisfied by the transformation
parameters   L L1 11L , the principal point ( , )x y0 0 , and the principal distance c , respectively. The values of

  c c1 6L  are zero when the given constraints are satisfied. In this formulation, the maximum number of
equations is ( )2 6N +  when all constraints are applied, and the maximum number of unknowns is 20, i.e.,

  ( , , , , , , , , , , , )L L x y K K K P P A A1 11 0 0 1 2 3 1 2 1 2L .
During iteration, the values of the unknowns are updated by adding a small adjustment to each.

The adjustments are calculated by finding a least-squares solution to
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Iteration is stopped when the maximum adjustment falls below a given tolerance. A weight matrix can be
included in the least-squares solution to place more or less emphasis on the constraint equations or to
account for different uncertainties in the registration-mark locations. Setting the weight of the constraints
or the registration-mark locations to zero removes them from the solution. All registration marks and



constraints are weighted equally in this study. Each pair of constraints can also be turned ÒonÓ or ÒoffÓ by
control keywords at userÕs choice.

The principal-point location computed in the solution sometimes tends to large errors. Three
techniques have been implemented to deal with this problem. The first one is to bound the principal point
within a specified range, but let it vary freely within that range in each iteration. The second technique is to
keep the principal point constant, using the value from the initial guess in every iteration. The principal-
point constraints can be included in this situation as well, in which case compliance will be sought by
adjusting the L values alone, not the principal-point location. In the third technique, the principal point is
no longer solved as unknown variables but computed directly from the L values. The expressions for
¶ ¶f Li j  and ¶ ¶g Li j  are greatly simplified since Dx  and Dy  no longer contribute any terms to the partial
derivatives with respect to the principal point. To simplify the code, when the originally described method
is implemented, partial derivatives are first computed considering x0  and y0  to be additional variables.
Then the following chain-rule operation is performed:
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x0  and y0  are then removed from the vector of unknowns and the ¶ ¶x0  and ¶ ¶y0  elements are removed
from the matrix of partial derivatives. Of course, the P-constraints are not applicable under this situation.

3. PRACTICAL TESTS AND RESULTS

A Photometrics camera (Model TEK512AF) with an AF Micro-Nikkor 60 mm f/2.8 lens was used
in TSP luminescence imaging of a supersonic swept-wing model. This camera is a scientific-grade,
thermoelectrically cooled, 14-bit digital CCD camera. It has a 512 ´ 512 sensor array with 27 mm square
sensor elements. Results of laboratory calibration of this camera were given in Reference 4 and
summarized as follows:
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where S  is the relative precision. A relative precision of 10,000 implies that 0.1 mm can be resolved in an
image spanning 1 m along its diagonal. The higher-order symmetric, asymmetric, and affine distortion
parameters were set to zero in this laboratory calibration after initial trials confirmed that they were
negligible. Forcing these terms to zero reduces the risk of problems associated with over-parameterization
in the calibration results. These laboratory calibration results will be used as a bench mark for comparing
the in-situ and hybrid calibrations discussed in the following.
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          Figure 2. - Swept-wing model with suction panel.
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  Figure 3. - Raw image of swept-wing model
             showing 21 targets and 3 check points.

The same CCD camera system with the same lens settings was used for the in-situ and hybrid
calibrations with luminescent TSP imaging on a three-dimensional swept-wing model tested in the
Supersonic Low-Disturbance Tunnel at NASA Langley. Figure 2 shows a sketch of the swept-wing model
partially covered with a suction panel that is denoted by a polygon filled with a group of parallel lines.
Details on the tunnel, model and TSP technique were given in Reference 7. The TSP technique is
developed for the purpose of transition detection in order to evaluate the Laminar Flow Control technique
with surface suction on the swept-wing model. Figure 3 shows an original ÒrawÓ image, from which the
transition data on the lower half of the model is obtained. Note the locations of the black targets, the
object-space centroid locations of which were measured by a Brown and Sharpe Coordinate Measuring
Machine in terms of model coordinates. There are 21 targets used as registration marks for camera
calibration, and 3 check points denoted as ÒaÓ, ÒbÓ and ÒcÓ are reserved for calibration evaluation.

Figure 4 shows a ÒtransitionÓ image of the
swept-wing model in Mach 3.5 flow that is from
left to right. The long dimension of image covers
approximately 340 mm. The onset of transition is
demarcated in the image by a light-gray parabolic
band. To determine the locations of the transition
front in model coordinates, various combinations
of the photogrammetric techniques described
earlier in this paper were used to perform the
mapping. Tables 1(a) and 1(b) summarize the
results of photogrammetric mapping by the
iterative least-squares adjustment algorithm
described in the previous section and the
Levenberg-Marquardt algorithm used by other
investigators,4 respectively. Four cases are

Transition
onset

  Figure 4. - Transition image of swept-wing
                    model at Mach 3.5.

included in tables: (1) the basic DLT (Eqns. 1 only), (2) DLT with the L-constraints (Eqns. 1 and 6), (3)
the in-situ calibration including one distortion-correction parameter K1 as the only one additional unknown
and applying the L-constraints (Eqns. 2 and 6 with application of Eqn. 10), and (4) a hybrid scheme using



the calibrated values of ( , , )x y c0 0  from Eqns. 11, by holding these parameters fixed but still allows some
flexibility in allowing the values of appropriate distortion-correction parameters to be obtained in-situ (K1
only in this example; solving Eqns. 2, 6 and 7). All computations were carried on a Sun SPARC station 2
computer. Note that both algorithms are able to obtain similar results of camera parameters and achieve
similar accuracy that is represented either by the relative precision S , estimated as 340 2 max( )residual ,
or by the mapping errors at the check points a, b and c. However, the least-squares adjustment algorithm
takes much less computer time (CPU) to reach the solutions when iteration is required. Some interesting
points are noted. First, the L-constraints have no significant effects on the solutions. Second, reasonable
values are obtained for c  in all cases, but the accuracy associated with the principal-point location ( , )x y0 0

is poor except for Case 4 in which ( , , )x y c0 0  are held fixed at the calibrated values. Third, the accuracy
associated with ( , , )x y c0 0 , computed by Eqns. 7, is improved by including K1 as shown in Case 3.
Because the distortion corrections are proportional to the distance from ( , )x y0 0 , raised to some power, the
errors associated with poor estimates for the principal-point location can be significant even for a camera
system with moderate distortion.

Further attempts to improve the accuracy associated with the interior-orientation parameters were
tried by solving ( , )x y0 0  as additional unknowns, including only one distortion-correction parameter K1, in
photogrammetric mapping by the iterative least-squares adjustment scheme. Results of various
combinations of techniques are summarized in Table 2. The L-constraints were applied to each case listed
in Table 2 even though they do not have significant effect on the solutions. Additional techniques applied
to the cases of Table 2 are: (1) the P-constraints, (2) the P-constraints and a range-limit for ( , )x y0 0 , (3) the
P-constraints and C-constraints, (4) the C-constraints and a range-limit for ( , )x y0 0 , and (5) the P-
constraints, C-constraints and a range-limit for ( , )x y0 0 . When the C-constraints were applied, the value of
the principal distance was given as c = 62 5394.  mm that was obtained from the Case 3 of Table 1(a). The
range-limit for ( , )x y0 0  was set as ±1 pixel-dimension, i.e., 54 mm with 2 2´  binning, in the
neighborhood of the image-plane geometric center. The ( , )x y0 0  obtained from iterative solutions are
always fallen right on the preset range-limit when it is applied. Therefore, the values of ( , )x y0 0  listed in
Table 2 were computed by Eqns. 7 in order to be consistent with that shown in Table 1(a). Two important
findings must be addressed. First, the results of Case 1 in Table 2 are exactly the same as that of Case 3 in
Table 1(a). Although their approaches are different, their procedures are mathematically identical. Second,
application of the C-constraints and/or a range-limit for ( , )x y0 0  improves the accuracy of mapping as
denoted by the increases of the relative precision S .

Table 1.  Results of Photogrammetric Analysis.
(a) Least-Squares Adjustment Algorithm.

Parameter DLT Constrained DLT In Situ w/ K1 Hybrid w/ K1

x0 (mm) 6.566 6.514 3.320 -0.143
y0 (mm) -0.736 -0.492 -2.279 0.092
c (mm) 58.149 58.214 62.539 63.954
w (deg.) 87.793 88.079 85.460 88.305
f (deg.) 46.295 46.356 49.475 52.442
k (deg.) 1.624 1.403 3.407 1.129
Xc (mm) 915.563 916.053 955.366 967.815
Yc (mm) 482.545 482.939 515.506 529.822
Zc (mm) 2.340 1.854 0.767 -3.466

K1 (mm-2) - - 3.957´10-5 5.562´10-5

S 57,800 57,600 15,800 45,300
a error (x,y) (mm) (-31,3) (-30,3) (-32,5) (-31,3)
b error (x,y) (mm) (14,24) (14,24) (15,26) (16,25)



c error (x,y) (mm) (12,20) (12,20) (13,18) (12,18)
CPU (sec.) 0.5 0.8 5.4 1.4

(b) Levenberg-Marquardt Algorithm.

Parameter DLT Constrained DLT In Situ w/ K1 Hybrid w/ K1

x0 (mm) 6.566 6.514 3.957 -0.143
y0 (mm) -0.736 -0.492 -2.258 0.092
c (mm) 58.149 58.214 62.370 63.954
w (deg.) 87.793 88.079 85.529 88.306
f (deg.) 46.295 46.356 48.868 52.441
k (deg.) 1.624 1.403 3.342 1.128
Xc (mm) 915.563 916.053 953.821 967.811
Yc (mm) 482.545 482.939 514.632 529.823
Zc (mm) 2.340 1.854 0.764 -3.454

K1 (mm-2) - - 4.269´10-5 5.605´10-5

S 57,800 57,600 12,200 45,200
a error (x,y) (mm) (-31,3) (-30,3) (-32,5) (-31,3)
b error (x,y) (mm) (14,24) (14,24) (15,26) (16,25)
c error (x,y) (mm) (12,20) (12,20) (13,18) (12,18)

CPU (sec.) 0.5 4.5 150.5 16.2
Table 2. Results of the In-Situ Calibration with Various Improvement Techniques.

Parameter 1. /pc 2. /pc, pplim 3. /pc, /cc 4. /cc, pplim 5. /pc, /cc, pplim
x0 (mm) 3.320 5.268 6.634 2.410 2.657
y0 (mm) -2.279 -1.660 -1.552 -1.760 -2.878
c (mm) 62.539 60.290 62.539 62.293 62.527
w (deg.) 85.460 86.526 86.529 85.758 84.677
f (deg.) 49.475 47.614 46.209 50.390 50.120
k (deg.) 3.407 2.605 2.488 3.237 4.065
Xc (mm) 955.366 935.379 955.187 952.669 956.225
Yc (mm) 515.506 499.265 519.916 512.039 514.942
Zc (mm) 0.767 2.408 -0.687 -2.155 1.951

K1 (mm-2) 3.957´10-5 1.872´10-5 6.628´10-5 3.340´10-5 3.091´10-5

S 15,800 33,800 3,900 42,200 32,500
a error (x,y) (mm) (-32,5) (-44,7) (-33,6) (-43,4) (-39,9)
b error (x,y) (mm) (15,26) (15,26) (15,27) (13,26) (15,28)
c error (x,y) (mm) (13,18) (16,16) (13,17) (14,15) (17,14)

Note:     /pc - with P-constraints,    /cc - with C-constraints,    pplim - with range-limit for ( , )x y0 0 .

Other attempts to include more distortion-correction parameters in the in-situ calibration have been tried.
However, all of the results indicated that K1 is still the most significant parameter and the precision of
mapping is deteriorated when more unknowns are involved. These results are not included in the paper.

In all cases described above, the hybrid
scheme of Case 4 of Table 1(a) has the best
relative precision S , with the most accurate
interior-orientation parameters, ( , , )x y c0 0 .
Therefore, it is chosen to perform the final
photogrammetric mapping. Figure 5 shows the
mapping results. A surface grid of the model
consisting of 101 101´  points was used to map

the transition data. Before mapping the model coordinates
to the image plane by Eqns. 2, the optical distortion was
calculated by Eqns. 3 with calibrated K1 and ( , )x y0 0 .
Then, bilinear interpolation was used to determine the
surface values associated with the calculated pixel
locations. Checks are made to insure that the mapped data
fall within the physical boundaries of the CCD array and
the ( , , )X Y Z  locations of interest are visible.
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Figure 5. - Photogrammetric mapping of
                         transition image data to CFD grid.

4. SUMMARY

With no prior knowledge of the interior-orientation and distortion-correction parameters, the
iterative least-squares adjustment scheme can be used to solve the nonlinear transformation equations with
these parameters as additional unknowns. Therefore, the camera is calibrated simultaneously with solving
the perspective transformation. This procedure is the so-called in-situ calibration. No special calibration
rigs are needed. The computational requirements are easily within the capabilities of modern personal
computers, and the algorithms are efficient. The major drawback is that in some cases, the iterative
solution may fail to converge to the best solution. There exists a strong correlation between many of the
parameters, making it very difficult to solve for the full set of distortion corrections even under the best of
circumstances. With only one view of the registration marks, the interior-orientation parameters are very
difficult to accurately determine, which further hinders accurate calibration. To circumvent this obstacle, a
hybrid scheme is proposed to incorporate the laboratory-calibrated values of interior-orientation parameters
in the in-situ calibration. A relative precision of 1 part in 45,300 is achieved in a sample application to
luminescent temperature-sensitive paint imaging. However, when there is no laboratory calibration
available, various techniques are proposed to improve the accuracy of the in-situ calibration. The best
relative precision that can be achieved by the improved in-situ calibration in the same sample application is
1 part in 42,200, that is comparable to the hybrid calibration. This suggests that the in-situ calibration
incorporated with the iterative least-squares adjustment scheme is a viable tool for photogrammetric flow
visualization.
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